Rain driven by receding ice sheets as a cause of past climate change
نویسندگان
چکیده
[1] The Younger Dryas cold period, which interrupted the transition from the last ice age to modern conditions in Greenland, is one of the most dramatic incidents of abrupt climate change reconstructed from paleoclimate proxy records. Changes in the Atlantic Ocean overturning circulation in response to freshwater fluxes from melting ice are frequently invoked to explain this and other past climate changes. Here we propose an alternative mechanism in which the receding glacial ice sheets cause the atmospheric circulation to enter a regime with greater net precipitation in the North Atlantic region. This leads to a significant reduction in ocean overturning circulation, causing an increase in sea ice extent and hence colder temperatures. Positive feedbacks associated with sea ice amplify the cooling. We support the proposed mechanism with the results of a state-of-the-art global climate model. Our results suggest that the atmospheric precipitation response to receding glacial ice sheets could have contributed to the Younger Dryas cooling, as well as to other past climate changes involving the ocean overturning circulation.
منابع مشابه
Northern Hemisphere Ice-Sheet Influences on Global Climate Change
Large ice sheets actively interact with the rest of the climate system by amplifying, pacing, and potentially driving global climate change over several time scales. Direct and indirect influences of ice sheets on climate cause changes in ocean surface temperatures, ocean circulation, continental water balance, vegetation, and landsurface albedo, which in turn cause additional feedbacks in the ...
متن کاملReconstruction of the Past and Forecast of the Future European and British Ice Sheets and Associated Sea--Level Change
The aim of this project is to improve our understanding of the past European and British ice sheets as a basis for forecasting their future. The behaviour of these ice sheets is investigated by simulating them using a numerical model and comparing model results with geological data including relative sea–level change data. In order to achieve this aim, a coupled ice sheet/lithosphere model is d...
متن کاملIce Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6
Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this ...
متن کاملNumerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle
A 3-dimensional thermo-mechanical ice-sheet model is used to simulate the evolution of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. The ice-sheet model is forced by the results from six different atmospheric general circulation models (AGCMs). The climate evolution over the period under study is reconstructed using two climate equilibrium simulations performed...
متن کاملHow will melting of ice affect volcanic hazards in the twenty-first century?
Glaciers and ice sheets on many active volcanoes are rapidly receding. There is compelling evidence that melting of ice during the last deglaciation triggered a dramatic acceleration in volcanic activity. Will melting of ice this century, which is associated with climate change, similarly affect volcanic activity and associated hazards? This paper provides a critical overview of the evidence th...
متن کامل